The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062292 A B_2 sequence: a(n) is the smallest cube such that the pairwise sums of {a(1)...a(n)} are all distinct. 2
 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 2197, 2744, 3375, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 35937, 42875, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A Mian-Chowla sequence consisting only of cubes. LINKS Table of n, a(n) for n=1..40. EXAMPLE During recursive construction of this set, for n=1-50, the cubes of 12,18,24,32,34,36,48 are left out to keep all sums of distinct cubes distinct from each other. PROG (Python) from itertools import count, islice def A062292_gen(): # generator of terms aset1, aset2, alist = set(), set(), [] for k in (n**3 for n in count(1)): bset2 = {k<<1} if (k<<1) not in aset2: for d in aset1: if (m:=d+k) in aset2: break bset2.add(m) else: yield k alist.append(k) aset1.add(k) aset2.update(bset2) A062292_list = list(islice(A062292_gen(), 30)) # Chai Wah Wu, Sep 05 2023 CROSSREFS Cf. A011185, A010672, A025582, A005282, A062294. Sequence in context: A118880 A048390 A000578 * A030295 A052045 A014187 Adjacent sequences: A062289 A062290 A062291 * A062293 A062294 A062295 KEYWORD nonn AUTHOR Labos Elemer, Jul 02 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 20:41 EDT 2023. Contains 365714 sequences. (Running on oeis4.)