login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052045
Cubes lacking the digit zero in their decimal expansion.
9
1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 29791, 32768, 35937, 42875, 46656, 54872, 59319, 68921, 85184, 91125, 97336, 117649, 132651, 148877
OFFSET
1,2
COMMENTS
This sequence is infinite since A052427(n)^3 is a term for all n>=0. - Amiram Eldar, Nov 23 2020
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Eric Weisstein's World of Mathematics, Zerofree [From Reinhard Zumkeller, Dec 01 2009]
FORMULA
Intersection of A052382 and A000578; A168046(a(n))*A010057(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) = A052044(n)^3. - Amiram Eldar, Nov 23 2020
MAPLE
select(t -> not has(convert(t, base, 10), 0), [seq(m^3, m=1..10^3)]); # Robert Israel, Aug 24 2014
MATHEMATICA
Select[Range[53]^3, DigitCount[#, 10, 0] == 0 &] (* Amiram Eldar, Nov 23 2020 *)
PROG
(Python)
A052045 = [n**3 for n in range(1, 10**5) if not str(n**3).count('0')]
# Chai Wah Wu, Aug 24 2014
(PARI) lista(nn) = {for (n=1, nn, if (vecmin(digits(cub=n^3)), print1(cub, ", ")); ); } \\ Michel Marcus, Aug 25 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Dec 15 1999
STATUS
approved