login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276918
a(2n) = A060867(n+1), a(2n+1) = A092440(n+1).
1
1, 5, 9, 25, 49, 113, 225, 481, 961, 1985, 3969, 8065, 16129, 32513, 65025, 130561, 261121, 523265, 1046529, 2095105, 4190209, 8384513, 16769025, 33546241, 67092481, 134201345, 268402689, 536838145, 1073676289, 2147418113, 4294836225, 8589803521, 17179607041
OFFSET
0,2
COMMENTS
In binary there is a pattern in how the zeros and ones appear:
a(0) = 01
a(1) = 101
a(2) = 1001
a(3) = 11001
a(4) = 110001
a(5) = 1110001
a(6) = 11100001
a(7) = 111100001
a(8) = 1111000001
a(9) = 11111000001
a(10) = 111110000001
a(11) = 1111110000001
a(12) = 11111100000001
a(13) = 111111100000001
a(14) = 1111111000000001
a(15) = 11111111000000001
Graphically, each term can be obtained by successively and alternately forming squares and centered squares as shown in the illustration.
FORMULA
a(n) = 1 + 2^(n+2) - 2^(1 + n/2) + (-1)^(n+1)*2^(1 + n/2) - 2^((n+1)/2) + (-1)^(n+2)*2^((n+1)/2).
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>3.
G.f.: (-1-2*x+6*x^2-4*x^3)/(-1+3*x-6*x^3+4*x^4).
MATHEMATICA
Table[1+2^(n+2)-2^(1+n/2)+(-1)^(n+1) 2^(1+n/2)-2^((n+1)/2)+(-1)^(n+2) 2^((n+1)/2), {n, 0, 28}] (*or*)
CoefficientList[Series[(-1 - 2 x + 6 x^2 - 4 x^3)/(-1 + 3 x - 6 x^3 + 4 x^4), {x, 0, 28}], x] (*or*)
LinearRecurrence[{3, 0, -6, 4}, {1, 5, 9, 25}, 29]
PROG
(PARI) Vec((-1-2*x+6*x^2-4*x^3) / (-1+3*x-6*x^3+4*x^4) + O(x^29))
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved