login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276920
Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.
2
1, 8, 27, 72, 125, 216, 595, 704, 1539, 1000, 1331, 1944, 3133, 4760, 3375, 5632, 4913, 12312, 8911, 9000, 16065, 10648, 12167, 19008, 16125, 25064, 45927, 42840, 24389, 27000, 35371, 47104, 35937, 39304, 74375, 110808, 58645, 71288, 84591, 88000
OFFSET
1,2
COMMENTS
a(n) = n^3 if n is in A074243. - Robert Israel, Oct 13 2016
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..242 from Robert Israel)
EXAMPLE
For n = 3, we see that all nondecreasing solutions {x, y, z, t} are in {{1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 3, 3}, {2, 2, 2, 3}, {3, 3, 3, 3}}. The numbers in the sets can be ordered in 4, 6, 12, 4 and 1 ways respectively. Therefore, a(3) = 4 + 6 + 12 + 4 + 1 = 27. - David A. Corneth, Oct 11 2016
MAPLE
CF:= table([[false, false, true] = 12, [true, false, false] = 12, [true, false, true] = 6, [false, false, false] = 24, [true, true, true] = 1, [false, true, true] = 4, [false, true, false] = 12, [true, true, false] = 4]):
f1:= proc(n)
option remember;
local count, t, x, y, z, signature;
if isprime(n) and n mod 3 = 2 then return n^3 fi;
count:= 0;
for t from 1 to n do
for x from 1 to t do
for y from 1 to x do
for z from 1 to y do
if t^3 + x^3 + y^3 + z^3 mod n = 0 then
signature:= map(evalb, [z=y, y=x, x=t]);
count:= count + CF[signature];
fi
od od od od;
count
end proc:
f:= proc(n) local t;
mul(f1(t[1]^t[2]), t=ifactors(n)[2])
end proc:
map(f, [$1..40]); # Robert Israel, Oct 13 2016
MATHEMATICA
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 0], {n, 1, 50}]
PROG
(PARI) a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x, n)^3 + Mod(y, n)^3 + Mod(z, n)^3 + Mod(t, n)^3 == 0)))); \\ Michel Marcus, Oct 11 2016
(PARI) qperms(v) = {my(r=1, t); v = vecsort(v); for(i=1, #v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1); t=0)); r*=binomial(#v, t+1)}
a(n) = {my(t=0); forvec(v=vector(4, i, [1, n]), if(sum(i=1, 4, Mod(v[i], n)^3)==0, t+=qperms(v)), 1); t} \\ David A. Corneth, Oct 11 2016
(Python)
def A276920(n):
ndict = {}
for i in range(n):
i3 = pow(i, 3, n)
for j in range(i+1):
j3 = pow(j, 3, n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
KEYWORD
nonn,mult
AUTHOR
STATUS
approved