login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276923
Number of ordered set partitions of [2n] where the maximal block size equals n.
3
1, 2, 42, 860, 21490, 657972, 24011988, 1017804216, 49118959890, 2657929522820, 159340977018652, 10480673825750856, 750335572490293972, 58077997318270046600, 4832536579295065540200, 430136064463753547944560, 40779223639911413185024530
OFFSET
0,2
LINKS
FORMULA
a(n) = A276922(2n,n).
a(n) ~ 2^(2*n-3/2) * n^(n+1) / (exp(n) * log(2)^(n+2)). - Vaclav Kotesovec, Sep 24 2016
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> A(2*n, n) -`if`(n=0, 0, A(2*n, n-1)):
seq(a(n), n=0..20);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := A[2*n, n] - If[n == 0, 0, A[2*n, n - 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 13 2018, translated from Maple *)
CROSSREFS
Sequence in context: A318247 A038396 A287328 * A308526 A162678 A265867
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 22 2016
STATUS
approved