login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.
2

%I #29 Jun 07 2017 00:35:43

%S 1,8,27,72,125,216,595,704,1539,1000,1331,1944,3133,4760,3375,5632,

%T 4913,12312,8911,9000,16065,10648,12167,19008,16125,25064,45927,42840,

%U 24389,27000,35371,47104,35937,39304,74375,110808,58645,71288,84591,88000

%N Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.

%C a(n) = n^3 if n is in A074243. - _Robert Israel_, Oct 13 2016

%H Chai Wah Wu, <a href="/A276920/b276920.txt">Table of n, a(n) for n = 1..10000</a> (terms n = 1..242 from Robert Israel)

%e For n = 3, we see that all nondecreasing solutions {x, y, z, t} are in {{1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 3, 3}, {2, 2, 2, 3}, {3, 3, 3, 3}}. The numbers in the sets can be ordered in 4, 6, 12, 4 and 1 ways respectively. Therefore, a(3) = 4 + 6 + 12 + 4 + 1 = 27. - _David A. Corneth_, Oct 11 2016

%p CF:= table([[false, false, true] = 12, [true, false, false] = 12, [true, false, true] = 6, [false, false, false] = 24, [true, true, true] = 1, [false, true, true] = 4, [false, true, false] = 12, [true, true, false] = 4]):

%p f1:= proc(n)

%p option remember;

%p local count, t, x,y,z,signature;

%p if isprime(n) and n mod 3 = 2 then return n^3 fi;

%p count:= 0;

%p for t from 1 to n do

%p for x from 1 to t do

%p for y from 1 to x do

%p for z from 1 to y do

%p if t^3 + x^3 + y^3 + z^3 mod n = 0 then

%p signature:= map(evalb,[z=y,y=x,x=t]);

%p count:= count + CF[signature];

%p fi

%p od od od od;

%p count

%p end proc:

%p f:= proc(n) local t;

%p mul(f1(t[1]^t[2]),t=ifactors(n)[2])

%p end proc:

%p map(f, [$1..40]); # _Robert Israel_, Oct 13 2016

%t JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 0], {n, 1, 50}]

%o (PARI) a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 0)))); \\ _Michel Marcus_, Oct 11 2016

%o (PARI) qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1);t=0));r*=binomial(#v,t+1)}

%o a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1,4,Mod(v[i],n)^3)==0, t+=qperms(v)),1);t} \\ _David A. Corneth_, Oct 11 2016

%o (Python)

%o def A276920(n):

%o ndict = {}

%o for i in range(n):

%o i3 = pow(i,3,n)

%o for j in range(i+1):

%o j3 = pow(j,3,n)

%o m = (i3+j3) % n

%o if m in ndict:

%o if i == j:

%o ndict[m] += 1

%o else:

%o ndict[m] += 2

%o else:

%o if i == j:

%o ndict[m] = 1

%o else:

%o ndict[m] = 2

%o count = 0

%o for i in ndict:

%o j = (-i) % n

%o if j in ndict:

%o count += ndict[i]*ndict[j]

%o return count # _Chai Wah Wu_, Jun 06 2017

%Y Cf. A000189, A047726, A060839, A063454, A074243, A087412, A087786, A254073, A276919.

%K nonn,mult

%O 1,2

%A _José María Grau Ribas_, Sep 22 2016