login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372227
a(n) = Sum_{k=1..n} sigma( (n/gcd(k,n))^2 ).
3
1, 8, 27, 70, 125, 216, 343, 578, 753, 1000, 1331, 1890, 2197, 2744, 3375, 4666, 4913, 6024, 6859, 8750, 9261, 10648, 12167, 15606, 15745, 17576, 20427, 24010, 24389, 27000, 29791, 37418, 35937, 39304, 42875, 52710, 50653, 54872, 59319, 72250, 68921, 74088
OFFSET
1,2
LINKS
FORMULA
If k is squarefree (cf. A005117) then a(k) = k^3.
a(n) = Sum_{d|n} phi(d) * sigma(d^2).
From Amiram Eldar, May 20 2024: (Start)
Multiplicative with a(p^e) = (p^(3*e+3)-1)/(p^3-1) - (p^e-1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (Pi^2/15) * zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.03291869994469216597... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#] * DivisorSigma[1, #^2] &]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*sigma(d^2));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 19 2024
STATUS
approved