login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276916
Subsequence of centered square numbers obtained by adding four triangles from A276914 and a central element, a(n) = 4*A276914(n) + 1.
1
1, 5, 41, 61, 145, 181, 313, 365, 545, 613, 841, 925, 1201, 1301, 1625, 1741, 2113, 2245, 2665, 2813, 3281, 3445, 3961, 4141, 4705, 4901, 5513, 5725, 6385, 6613, 7321, 7565, 8321, 8581, 9385, 9661, 10513, 10805, 11705, 12013, 12961, 13285, 14281, 14621, 15665
OFFSET
0,2
COMMENTS
All terms of this sequence are centered square numbers. Graphically, each term of the sequence is made of four squares, eight triangles and a central element.
a(A220185(n+1)) = A008844(2n) = A079291(4n+1), which is a square of a Pell number.
LINKS
FORMULA
a(n) = 4*n*(2*n + (-1)^n) + 1.
a(n) = 4*n*(2*n + 1) + 1 for n even.
a(n) = 4*n*(2*n - 1) + 1 for n odd.
a(n) is sum of two squares; a(n) = k^2 + (k+1)^2 where k = 2n-(n mod 2). - David A. Corneth, Sep 27 2016
From Colin Barker, Sep 27 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
G.f.: (1+4*x+34*x^2+12*x^3+13*x^4) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: (1+8*x+8*x^2)*exp(x) - 4*x*exp(-x). - G. C. Greubel, Aug 19 2022
MAPLE
A276916:=n->4*n*(2*n+(-1)^n)+1: seq(A276916(n), n=0..60); # Wesley Ivan Hurt, Sep 27 2016
MATHEMATICA
Table[4 n (2 n + (-1)^n) + 1, {n, 0, 44}] (* or *)
CoefficientList[Series[(1 +4x +34x^2 +12x^3 +13x^4)/((1-x)^3*(1+x)^2), {x, 0, 44}], x] (* Michael De Vlieger, Sep 28 2016 *)
PROG
(PARI) Vec((1+4*x+34*x^2+12*x^3+13*x^4)/((1-x)^3*(1+x)^2) + O(x^50)) \\ Colin Barker, Sep 27 2016
(Magma) [4*n*(2*n+(-1)^n)+1 : n in [0..60]]; // Wesley Ivan Hurt, Sep 27 2016
(SageMath) [4*n*(2*n+(-1)^n) +1 for n in (0..60)] # G. C. Greubel, Aug 19 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved