login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276913
E.g.f. A(x) satisfies: Series_Reversion( A(x)*exp(x) ) = A(x)*exp(-x).
3
1, 0, 3, 0, -35, 0, 6111, 0, -3015207, 0, 3457389595, 0, -7910176435083, 0, 32652618744201015, 0, -225992449753641748943, 0, 2477459751096859267509171, 0, -41090881423264757483386565235, 0, 992851798453466404257942193460239, 0, -33857339246997857308988305386104611575, 0, 1586206583926227307173185697414192414735051, 0, -99763501980273385738989314186327124186627104987, 0
OFFSET
1,3
COMMENTS
It appears that a(6*k+5) = 1 (mod 3) for k>=0 with a(n) = 0 (mod 3) elsewhere.
LINKS
FORMULA
E.g.f. A(x) also satisfies:
(1) A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ).
(2) A( A(x)*exp(-x) ) = x*exp( -A(x)*exp(-x) ).
EXAMPLE
E.g.f.: A(x) = x + 3*x^3/3! - 35*x^5/5! + 6111*x^7/7! - 3015207*x^9/9! + 3457389595*x^11/11! - 7910176435083*x^13/13! + 32652618744201015*x^15/15! - 225992449753641748943*x^17/17! + 2477459751096859267509171*x^19/19! - 41090881423264757483386565235*x^21/21! + 992851798453466404257942193460239*x^23/23! - 33857339246997857308988305386104611575*x^25/25! +...
RELATED SERIES.
By definition, Series_Reversion( A(x)*exp(x) ) = A(x)*exp(-x), where
A(x)*exp(x) = x + 2*x^2/2! + 6*x^3/3! + 16*x^4/4! - 144*x^6/6! + 5488*x^7/7! + 47104*x^8/8! - 2799360*x^9/9! - 29427200*x^10/10! + 3293554176*x^11/11! + 40830142464*x^12/12! - 7642645477376*x^13/13! - 109489995819008*x^14/14! + 31826754503424000*x^15/15! +...+ A193341(n)*x^n/n! +...
A(x)*exp(-x) = x - 2*x^2/2! + 6*x^3/3! - 16*x^4/4! + 144*x^6/6! + 5488*x^7/7! - 47104*x^8/8! - 2799360*x^9/9! +...+ (-1)^(n-1)*A193341(n)*x^n/n! +...
Also, A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ), where
A( A(x)*exp(x) ) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 325*x^5/5! + 2046*x^6/6! + 14749*x^7/7! + 166664*x^8/8! + 1855305*x^9/9! - 8673830*x^10/10! - 380002799*x^11/11! + 33613835388*x^12/12! + 913029698893*x^13/13! - 91462474379626*x^14/14! - 2893000394547675*x^15/15! + 452208618208709776*x^16/16! +...
exp( A(x)*exp(x) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 65*x^4/4! + 341*x^5/5! + 2107*x^6/6! + 20833*x^7/7! + 206145*x^8/8! - 867383*x^9/9! - 34545709*x^10/10! + 2801152949*x^11/11! + 70233053761*x^12/12! - 6533033884259*x^13/13! - 192866692969845*x^14/14! + 28263038638044361*x^15/15! +...
Also,
A'( A(x)*exp(-x) ) * exp( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x, or
x*A'( A(x)*exp(-x) ) / A( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x.
The series reversion begins:
Series_Reversion( A(x) ) = x - 3*x^3/3! + 125*x^5/5! - 19551*x^7/7! + 8072217*x^9/9! - 7563307675*x^11/11! + 14604702539349*x^13/13! - 53272560312696375*x^15/15! + 338351296939319691953*x^17/17! +...
PROG
(PARI) {a(n) = my(A = x +x*O(x^n)); for(i=1, n, A = A + (x - subst(A*exp(x +x*O(x^n)), x, A*exp(-x +x*O(x^n))))/2); n!*polcoeff(A, n)}
for(n=1, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 01 2016
STATUS
approved