OFFSET
1,3
COMMENTS
It appears that a(6*k+5) = 1 (mod 3) for k>=0 with a(n) = 0 (mod 3) elsewhere.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..151
FORMULA
E.g.f. A(x) also satisfies:
(1) A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ).
(2) A( A(x)*exp(-x) ) = x*exp( -A(x)*exp(-x) ).
EXAMPLE
E.g.f.: A(x) = x + 3*x^3/3! - 35*x^5/5! + 6111*x^7/7! - 3015207*x^9/9! + 3457389595*x^11/11! - 7910176435083*x^13/13! + 32652618744201015*x^15/15! - 225992449753641748943*x^17/17! + 2477459751096859267509171*x^19/19! - 41090881423264757483386565235*x^21/21! + 992851798453466404257942193460239*x^23/23! - 33857339246997857308988305386104611575*x^25/25! +...
RELATED SERIES.
By definition, Series_Reversion( A(x)*exp(x) ) = A(x)*exp(-x), where
A(x)*exp(x) = x + 2*x^2/2! + 6*x^3/3! + 16*x^4/4! - 144*x^6/6! + 5488*x^7/7! + 47104*x^8/8! - 2799360*x^9/9! - 29427200*x^10/10! + 3293554176*x^11/11! + 40830142464*x^12/12! - 7642645477376*x^13/13! - 109489995819008*x^14/14! + 31826754503424000*x^15/15! +...+ A193341(n)*x^n/n! +...
A(x)*exp(-x) = x - 2*x^2/2! + 6*x^3/3! - 16*x^4/4! + 144*x^6/6! + 5488*x^7/7! - 47104*x^8/8! - 2799360*x^9/9! +...+ (-1)^(n-1)*A193341(n)*x^n/n! +...
Also, A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ), where
A( A(x)*exp(x) ) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 325*x^5/5! + 2046*x^6/6! + 14749*x^7/7! + 166664*x^8/8! + 1855305*x^9/9! - 8673830*x^10/10! - 380002799*x^11/11! + 33613835388*x^12/12! + 913029698893*x^13/13! - 91462474379626*x^14/14! - 2893000394547675*x^15/15! + 452208618208709776*x^16/16! +...
exp( A(x)*exp(x) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 65*x^4/4! + 341*x^5/5! + 2107*x^6/6! + 20833*x^7/7! + 206145*x^8/8! - 867383*x^9/9! - 34545709*x^10/10! + 2801152949*x^11/11! + 70233053761*x^12/12! - 6533033884259*x^13/13! - 192866692969845*x^14/14! + 28263038638044361*x^15/15! +...
Also,
A'( A(x)*exp(-x) ) * exp( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x, or
x*A'( A(x)*exp(-x) ) / A( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x.
The series reversion begins:
Series_Reversion( A(x) ) = x - 3*x^3/3! + 125*x^5/5! - 19551*x^7/7! + 8072217*x^9/9! - 7563307675*x^11/11! + 14604702539349*x^13/13! - 53272560312696375*x^15/15! + 338351296939319691953*x^17/17! +...
PROG
(PARI) {a(n) = my(A = x +x*O(x^n)); for(i=1, n, A = A + (x - subst(A*exp(x +x*O(x^n)), x, A*exp(-x +x*O(x^n))))/2); n!*polcoeff(A, n)}
for(n=1, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 01 2016
STATUS
approved