login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174054
Primes of the form x^2+y^2 such that L(x)*L(y) = -1, where L is the Liouville lambda-function A008836.
1
5, 41, 61, 109, 137, 149, 157, 229, 269, 281, 317, 389, 397, 401, 461, 509, 557, 601, 617, 653, 701, 769, 773, 797, 829, 857, 877, 937, 941, 977, 997, 1009, 1013, 1061, 1093, 1097, 1153, 1181, 1213, 1217, 1229, 1249, 1277, 1289, 1321, 1409, 1453, 1489
OFFSET
1,1
EXAMPLE
5 = 1 + 2^2 and L(1)*L(2)= (1) *(-1) = -1.
41 = 4^2 + 5^2 and L(4)*L(5)= (1)*(-1) = -1
MAPLE
isA174054 := proc(n)
local x, y ;
if not isprime(n) then
return false;
end if;
for x from 1 do
if x^2 > n then
return false;
end if;
if issqr(n-x^2) then
y := sqrt(n-x^2) ;
if A008836(x) * A008836(y) = -1 then
return true;
end if;
end if;
end do:
end proc:
for n from 1 to 2000 do
if isA174054(n) then
printf("%d, \n", n) ;
end if;
end do: # R. J. Mathar, Jul 09 2012
MATHEMATICA
lambdaQ[{x_, y_}] := LiouvilleLambda[x]*LiouvilleLambda[y] == -1; Select[ Prime /@ Range[300], Or @@ lambdaQ /@ PowersRepresentations[#, 2, 2] &] (* Jean-François Alcover, Jul 30 2013 *)
CROSSREFS
Sequence in context: A041599 A302692 A232881 * A106963 A276916 A203018
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 06 2010
STATUS
approved