login
A174056
Prime sums of three Mersenne primes. Primes in A174055.
4
13, 17, 37, 41, 137, 257, 2147483777, 162259895799233006081715459850241
OFFSET
1,1
COMMENTS
Sums of five Mersenne primes can also be prime (though, obviously sums of an even number of Mersenne primes are even).
3 + 3 + 3 + 3 + 7 = 19
3 + 3 + 3 + 7 + 7 = 23
3 + 7 + 7 + 7 + 7 = 31
3 + 3 + 3 + 3 + 31 = 43
3 + 3 + 3 + 7 + 31 = 47
7 + 7 + 7 + 7 + 31 = 59
3 + 3 + 3 + 31 + 31 = 71
3 + 7 + 7+ 31 + 31 = 79
That sequence of sums of five Mersenne primes 19, 23, 31, 43, 47, 59, 71, 79, ... is A269666.
No other terms < 10^1000. Conjecture: these are all the terms. - Robert Israel, Mar 02 2016
FORMULA
A000668(i) + A000668(j) + A000668(k), with integers i,j,k not necessarily distinct. The supersequence of sums of three Mersenne primes is A174055.
EXAMPLE
a(1) = 3 + 3 + 7 = 13. a(2) = 3 + 7 + 7 = 17. a(3) = 3 + 3 + 31 = 37. a(4) = 3 + 7 + 31 = 41. a(5) = 3 + 7 + 127 = 137. a(6) = 3 + 127 + 127 = 257.
MAPLE
N:= 10^1000: # to get all terms <= N
for n from 1 while numtheory:-mersenne([n]) < N do od:
S:= {seq(numtheory:-mersenne([i]), i=1..n-1)}:
sort(select(isprime, convert(select(`<=`, {seq(seq(seq(s+t+u, s=S), t=S), u=S)}, N), list))); # Robert Israel, Mar 02 2016
MATHEMATICA
Select[Total/@Tuples[Table[2^MersennePrimeExponent[n]-1, {n, 20}], 3], PrimeQ]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
CROSSREFS
Cf. A155877 (sums of three Fermat numbers).
Cf. A166484 (prime sums of three Fermat numbers).
Sequence in context: A069485 A263725 A340053 * A307894 A322472 A166681
KEYWORD
more,nonn
AUTHOR
Jonathan Vos Post, Mar 06 2010
EXTENSIONS
a(7)-a(8) from Donovan Johnson, Dec 22 2010
STATUS
approved