login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069485
Greatest prime factor of prime(n+1)^2 + prime(n)^2.
3
13, 17, 37, 17, 29, 229, 13, 89, 137, 53, 233, 61, 353, 2029, 193, 37, 277, 821, 953, 61, 89, 101, 1481, 1733, 53, 2081, 269, 2333, 29, 14449, 3329, 3593, 293, 1597, 22501, 73, 25609, 373, 28909, 6197, 32401, 389, 101, 2237, 7841, 42061, 29, 257, 281, 821
OFFSET
1,1
COMMENTS
How small can members of this sequence be? For example, a(52837) = 97 since 650107^2 + 650099^2 = 2 * 5^4 * 29 * 37 * 73 * 89 * 97. - Charles R Greathouse IV, May 14 2014
LINKS
FORMULA
a(n) = A006530(A069484(n)).
EXAMPLE
A069482(10) = A000040(11)^2 + A000040(10)^2 = 29^2 + 31^2 = 841 + 961 = 1802 = 2*17*53, therefore a(10) = 53.
MAPLE
seq(max(map2(op, 1, ifactors(ithprime(i+1)^2 + ithprime(i)^2)[2])), i=1..1000); # Robert Israel, May 18 2014
MATHEMATICA
Table[ FactorInteger[ Prime[n + 1]^2 + Prime[n]^2] [[ -1, 1]], {n, 1, 50} ]
FactorInteger[#][[-1, 1]]&/@Total/@Partition[Prime[Range[60]]^2, 2, 1] (* Harvey P. Dale, Jul 08 2019 *)
PROG
(PARI) gpf(n)=my(f=factor(n)[, 1]); f[#f]
a(n)=my(p=prime(n)); gpf(nextprime(p+1)^2 + p^2) \\ Charles R Greathouse IV, May 14 2014
CROSSREFS
Cf. A069483.
Sequence in context: A126808 A053009 A377465 * A263725 A340053 A174056
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 29 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Apr 18 2002
STATUS
approved