Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 08 2019 14:50:39
%S 13,17,37,17,29,229,13,89,137,53,233,61,353,2029,193,37,277,821,953,
%T 61,89,101,1481,1733,53,2081,269,2333,29,14449,3329,3593,293,1597,
%U 22501,73,25609,373,28909,6197,32401,389,101,2237,7841,42061,29,257,281,821
%N Greatest prime factor of prime(n+1)^2 + prime(n)^2.
%C How small can members of this sequence be? For example, a(52837) = 97 since 650107^2 + 650099^2 = 2 * 5^4 * 29 * 37 * 73 * 89 * 97. - _Charles R Greathouse IV_, May 14 2014
%H Robert Israel, <a href="/A069485/b069485.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A006530(A069484(n)).
%e A069482(10) = A000040(11)^2 + A000040(10)^2 = 29^2 + 31^2 = 841 + 961 = 1802 = 2*17*53, therefore a(10) = 53.
%p seq(max(map2(op,1,ifactors(ithprime(i+1)^2 + ithprime(i)^2)[2])), i=1..1000); # _Robert Israel_, May 18 2014
%t Table[ FactorInteger[ Prime[n + 1]^2 + Prime[n]^2] [[ -1, 1]], {n, 1, 50} ]
%t FactorInteger[#][[-1,1]]&/@Total/@Partition[Prime[Range[60]]^2,2,1] (* _Harvey P. Dale_, Jul 08 2019 *)
%o (PARI) gpf(n)=my(f=factor(n)[,1]); f[#f]
%o a(n)=my(p=prime(n)); gpf(nextprime(p+1)^2 + p^2) \\ _Charles R Greathouse IV_, May 14 2014
%Y Cf. A069483.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Mar 29 2002
%E Edited and extended by _Robert G. Wilson v_, Apr 18 2002