login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069488
Primes > 100 in which every substring of length 2 is also prime.
8
113, 131, 137, 173, 179, 197, 311, 313, 317, 373, 379, 419, 431, 479, 613, 617, 619, 673, 719, 797, 971, 1117, 1171, 1319, 1373, 1973, 1979, 2311, 2371, 2971, 3119, 3137, 3719, 3797, 4111, 4373, 6113, 6131, 6173, 6197, 6719, 6737
OFFSET
1,1
COMMENTS
Minimum number of digits is taken to be 3 as all two-digit primes would be trivial members.
From Robert G. Wilson v, May 12 2014: (Start)
The number of terms below 10^n: 0, 0, 21, 46, 123, 329, 810, 1733, 3985, 9710, ..., .
The least term with n digits is: 113, 1117, 11113, 111119, ..., see A090534.
The largest term with n digits is: 971, 9719, 97973, 979717, ..., see A242377.
The digits 2, 4, 5, 6 and 8 can only appear at the beginning of the prime and the digit 0 never appears. But the digits 1, 3, 7 and 9 can appear anywhere, yet only 1,1 can appear as a pair.
\10^n
d\ 1&2 3 4 5 6 7 8 9 10 Total % @ 10^10
\
1 0 19 34 146 648 1162 2678 8037 22740 39.188034
2 0 0 3 6 27 18 66 175 449 0.816186
3 0 14 19 63 326 712 1526 3855 11040 19.403018
4 0 3 2 13 54 92 143 384 1031 1.895550
5 0 0 0 9 17 24 45 176 426 0.763995
6 0 4 6 4 24 66 146 233 630 1.224834
7 0 14 20 100 436 907 1980 5442 15421 26.875285
8 0 0 3 6 24 25 37 176 388 0.721797
9 0 9 13 38 157 361 763 1790 5125 9.111301
Total 0 63 100 385 1713 3367 7384 20268 57250 100.00000
(End)
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10101 (first 1000 terms from Reinhard Zumkeller)
EXAMPLE
3719 is a term as the three substrings of length 2, i.e., 37, 71 and 19, are all prime.
MATHEMATICA
Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[100] + 1, 500}]
PROG
(Haskell)
a069488 n = a069488_list !! (n-1)
a069488_list = filter f $ dropWhile (<= 100) a038618_list where
f x = x < 10 || a010051 (x `mod` 100) == 1 && f (x `div` 10)
-- Reinhard Zumkeller, Apr 07 2014
CROSSREFS
Cf. A069489 and A069490.
Cf. A010051, subsequence of zeroless primes: A038618.
Sequence in context: A284598 A060591 A214847 * A131648 A355856 A180441
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Mar 30 2002
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002
STATUS
approved