login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355856
Primes, with at least one prime digit, that remain primes when all of their prime digits are removed.
1
113, 131, 139, 151, 179, 193, 197, 211, 241, 311, 389, 421, 431, 541, 613, 617, 631, 719, 761, 829, 839, 859, 1013, 1021, 1031, 1039, 1051, 1093, 1097, 1123, 1153, 1201, 1213, 1217, 1229, 1231, 1249, 1259, 1279, 1291, 1297, 1301, 1321, 1381, 1399, 1429, 1439, 1459, 1493, 1531, 1549
OFFSET
1,1
COMMENTS
Terms of A034844 that only have nonprime digits are not terms here. - Michel Marcus, Jul 19 2022
LINKS
EXAMPLE
The prime 179 is a term because when its prime digit 7 is removed, it remains 19, which is still a prime.
The prime 136457911 is a term because when all of its prime digits, 3, 5, and 7 are removed, it remains 164911, which is still a prime.
MATHEMATICA
q[n_] := (r = FromDigits[Select[IntegerDigits[n], ! PrimeQ[#] &]]) != n && PrimeQ[r]; Select[Prime[Range[250]], q] (* Amiram Eldar, Jul 19 2022 *)
PROG
(MATLAB)
function a = A355856( max_prime )
a = []; p = primes( max_prime );
for n = 1:length(p)
s = num2str(p(n));
s = strrep(s, '2', ''); s = strrep(s, '3', '');
s = strrep(s, '5', ''); s = strrep(s, '7', '');
m = str2double(s);
if m > 1
if isprime(m) && m ~= p(n)
a = [a p(n)];
end
end
end
end % Thomas Scheuerle, Jul 19 2022
(PARI) isok(p) = if (isprime(p), my(d=digits(p), v=select(x->(!isprime(x)), d)); (#v != #d) && isprime(fromdigits(v)); ) \\ Michel Marcus, Jul 19 2022
(Python)
from sympy import isprime
def ok(n):
s = str(n)
if n < 10 or set(s) & set("2357") == set(): return False
sd = s.translate({ord(c): None for c in "2357"})
return len(sd) and isprime(int(sd)) and isprime(n)
print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jul 23 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tamas Sandor Nagy, Jul 19 2022
STATUS
approved