OFFSET
1,1
COMMENTS
Terms of A034844 that only have nonprime digits are not terms here. - Michel Marcus, Jul 19 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000
EXAMPLE
The prime 179 is a term because when its prime digit 7 is removed, it remains 19, which is still a prime.
The prime 136457911 is a term because when all of its prime digits, 3, 5, and 7 are removed, it remains 164911, which is still a prime.
MATHEMATICA
q[n_] := (r = FromDigits[Select[IntegerDigits[n], ! PrimeQ[#] &]]) != n && PrimeQ[r]; Select[Prime[Range[250]], q] (* Amiram Eldar, Jul 19 2022 *)
PROG
(MATLAB)
function a = A355856( max_prime )
a = []; p = primes( max_prime );
for n = 1:length(p)
s = num2str(p(n));
s = strrep(s, '2', ''); s = strrep(s, '3', '');
s = strrep(s, '5', ''); s = strrep(s, '7', '');
m = str2double(s);
if m > 1
if isprime(m) && m ~= p(n)
a = [a p(n)];
end
end
end
end % Thomas Scheuerle, Jul 19 2022
(PARI) isok(p) = if (isprime(p), my(d=digits(p), v=select(x->(!isprime(x)), d)); (#v != #d) && isprime(fromdigits(v)); ) \\ Michel Marcus, Jul 19 2022
(Python)
from sympy import isprime
def ok(n):
s = str(n)
if n < 10 or set(s) & set("2357") == set(): return False
sd = s.translate({ord(c): None for c in "2357"})
return len(sd) and isprime(int(sd)) and isprime(n)
print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jul 23 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tamas Sandor Nagy, Jul 19 2022
STATUS
approved