Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Sep 13 2022 13:04:44
%S 113,131,139,151,179,193,197,211,241,311,389,421,431,541,613,617,631,
%T 719,761,829,839,859,1013,1021,1031,1039,1051,1093,1097,1123,1153,
%U 1201,1213,1217,1229,1231,1249,1259,1279,1291,1297,1301,1321,1381,1399,1429,1439,1459,1493,1531,1549
%N Primes, with at least one prime digit, that remain primes when all of their prime digits are removed.
%C Terms of A034844 that only have nonprime digits are not terms here. - _Michel Marcus_, Jul 19 2022
%H Michael S. Branicky, <a href="/A355856/b355856.txt">Table of n, a(n) for n = 1..10000</a>
%e The prime 179 is a term because when its prime digit 7 is removed, it remains 19, which is still a prime.
%e The prime 136457911 is a term because when all of its prime digits, 3, 5, and 7 are removed, it remains 164911, which is still a prime.
%t q[n_] := (r = FromDigits[Select[IntegerDigits[n], ! PrimeQ[#] &]]) != n && PrimeQ[r]; Select[Prime[Range[250]], q] (* _Amiram Eldar_, Jul 19 2022 *)
%o (MATLAB)
%o function a = A355856( max_prime )
%o a = []; p = primes( max_prime );
%o for n = 1:length(p)
%o s = num2str(p(n));
%o s = strrep(s,'2',''); s = strrep(s,'3','');
%o s = strrep(s,'5',''); s = strrep(s,'7','');
%o m = str2double(s);
%o if m > 1
%o if isprime(m) && m ~= p(n)
%o a = [a p(n)];
%o end
%o end
%o end
%o end % _Thomas Scheuerle_, Jul 19 2022
%o (PARI) isok(p) = if (isprime(p), my(d=digits(p), v=select(x->(!isprime(x)), d)); (#v != #d) && isprime(fromdigits(v));) \\ _Michel Marcus_, Jul 19 2022
%o (Python)
%o from sympy import isprime
%o def ok(n):
%o s = str(n)
%o if n < 10 or set(s) & set("2357") == set(): return False
%o sd = s.translate({ord(c): None for c in "2357"})
%o return len(sd) and isprime(int(sd)) and isprime(n)
%o print([k for k in range(2000) if ok(k)]) # _Michael S. Branicky_, Jul 23 2022
%Y Cf. A000040, A034844, A019546.
%K nonn,base
%O 1,1
%A _Tamas Sandor Nagy_, Jul 19 2022