login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355853
Primes in A333369.
1
3, 5, 7, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 137, 139, 157, 173, 179, 193, 197, 223, 227, 229, 317, 359, 379, 397, 443, 449, 571, 593, 661, 719, 739, 751, 881, 883, 887, 937, 953, 971, 1009, 1117, 1151, 1171, 1223, 1229, 1447, 1511, 1579, 1597, 1663, 1667, 1669
OFFSET
1,1
EXAMPLE
443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
MATHEMATICA
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
isok(m) = isprime(m) && issimber(m); \\ Michel Marcus, Jul 19 2022
(Python)
from itertools import count, islice
from sympy import isprime
def A355853_gen(startvalue=1): # generator of terms
return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n), count(max(startvalue, 1)))
A355853_list = list(islice(A355853_gen(), 30)) # Chai Wah Wu, Jul 21 2022
CROSSREFS
Intersection of A000040 and A333369.
Subsequence of A355773.
Supersequence of A155045.
Similar sequences: A002385, A004023.
Sequence in context: A045398 A162565 A321363 * A155045 A144296 A045399
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 19 2022
EXTENSIONS
Extended by Michel Marcus, Jul 19 2022
STATUS
approved