login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes in A333369.
1

%I #31 Jul 30 2022 12:38:25

%S 3,5,7,13,17,19,31,37,53,59,71,73,79,97,137,139,157,173,179,193,197,

%T 223,227,229,317,359,379,397,443,449,571,593,661,719,739,751,881,883,

%U 887,937,953,971,1009,1117,1151,1171,1223,1229,1447,1511,1579,1597,1663,1667,1669

%N Primes in A333369.

%e 443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.

%t simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* _Amiram Eldar_, Jul 19 2022 *)

%o (PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369

%o isok(m) = isprime(m) && issimber(m); \\ _Michel Marcus_, Jul 19 2022

%o (Python)

%o from itertools import count, islice

%o from sympy import isprime

%o def A355853_gen(startvalue=1): # generator of terms

%o return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n),count(max(startvalue,1)))

%o A355853_list = list(islice(A355853_gen(),30)) # _Chai Wah Wu_, Jul 21 2022

%Y Intersection of A000040 and A333369.

%Y Subsequence of A355773.

%Y Supersequence of A155045.

%Y Similar sequences: A002385, A004023.

%K nonn,base

%O 1,1

%A _Bernard Schott_, Jul 19 2022

%E Extended by _Michel Marcus_, Jul 19 2022