Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 02 2019 02:48:11
%S 113,131,137,173,179,197,311,313,317,373,379,419,431,479,613,617,619,
%T 673,719,797,971,1117,1171,1319,1373,1973,1979,2311,2371,2971,3119,
%U 3137,3719,3797,4111,4373,6113,6131,6173,6197,6719,6737
%N Primes > 100 in which every substring of length 2 is also prime.
%C Minimum number of digits is taken to be 3 as all two-digit primes would be trivial members.
%C From _Robert G. Wilson v_, May 12 2014: (Start)
%C The number of terms below 10^n: 0, 0, 21, 46, 123, 329, 810, 1733, 3985, 9710, ..., .
%C The least term with n digits is: 113, 1117, 11113, 111119, ..., see A090534.
%C The largest term with n digits is: 971, 9719, 97973, 979717, ..., see A242377.
%C The digits 2, 4, 5, 6 and 8 can only appear at the beginning of the prime and the digit 0 never appears. But the digits 1, 3, 7 and 9 can appear anywhere, yet only 1,1 can appear as a pair.
%C \10^n
%C d\ 1&2 3 4 5 6 7 8 9 10 Total % @ 10^10
%C \
%C 1 0 19 34 146 648 1162 2678 8037 22740 39.188034
%C 2 0 0 3 6 27 18 66 175 449 0.816186
%C 3 0 14 19 63 326 712 1526 3855 11040 19.403018
%C 4 0 3 2 13 54 92 143 384 1031 1.895550
%C 5 0 0 0 9 17 24 45 176 426 0.763995
%C 6 0 4 6 4 24 66 146 233 630 1.224834
%C 7 0 14 20 100 436 907 1980 5442 15421 26.875285
%C 8 0 0 3 6 24 25 37 176 388 0.721797
%C 9 0 9 13 38 157 361 763 1790 5125 9.111301
%C Total 0 63 100 385 1713 3367 7384 20268 57250 100.00000
%C (End)
%H Robert G. Wilson v, <a href="/A069488/b069488.txt">Table of n, a(n) for n = 1..10101</a> (first 1000 terms from Reinhard Zumkeller)
%e 3719 is a term as the three substrings of length 2, i.e., 37, 71 and 19, are all prime.
%t Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[100] + 1, 500}]
%o (Haskell)
%o a069488 n = a069488_list !! (n-1)
%o a069488_list = filter f $ dropWhile (<= 100) a038618_list where
%o f x = x < 10 || a010051 (x `mod` 100) == 1 && f (x `div` 10)
%o -- _Reinhard Zumkeller_, Apr 07 2014
%Y Cf. A069489 and A069490.
%Y Cf. A010051, subsequence of zeroless primes: A038618.
%K nonn,base
%O 1,1
%A _Amarnath Murthy_, Mar 30 2002
%E Edited, corrected and extended by _Robert G. Wilson v_, Apr 12 2002