login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174055
Sums of three Mersenne primes.
4
9, 13, 17, 21, 37, 41, 45, 65, 69, 93, 133, 137, 141, 161, 165, 189, 257, 261, 285, 381, 8197, 8201, 8205, 8225, 8229, 8253, 8321, 8325, 8349, 8445, 16385, 16389, 16413, 16509, 24573, 131077, 131081, 131085, 131105, 131109, 131133, 131201, 131205, 131229, 131325, 139265, 139269, 139293, 139389, 147453, 262145, 262149
OFFSET
1,1
LINKS
FORMULA
A000668(i) + A000668(j) + A000668(k), with integers i,j,k not necessarily distinct. The subsequence of prime sums of three Mersenne primes is A174056.
EXAMPLE
a(1) = 3 + 3 + 3 = 9. a(2) = 3 + 3 + 7 = 13. a(3) = 3 + 7 + 7 = 17. a(4) = 7 + 7 + 7 = 21. a(5) = 3 + 3 + 31 = 37. a(6) = 3 + 7 + 31 = 41.
MAPLE
N:= 10^6: # to get all terms <= N
for n from 1 while numtheory:-mersenne([n]) < N do od:
S:= {seq(numtheory:-mersenne([i]), i=1..n-1)}:
sort(convert(select(`<=`, {seq(seq(seq(s+t+u, s=S), t=S), u=S)}, N), list)); # Robert Israel, Mar 02 2016
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 06 2010
EXTENSIONS
More terms from Max Alekseyev, Oct 15 2012
Edited by Robert Israel, Mar 02 2016
STATUS
approved