login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.
2

%I #26 Jun 07 2017 00:35:36

%S 1,8,27,64,125,216,336,512,1296,1000,1331,1728,1794,2688,3375,4096,

%T 4913,10368,7410,8000,9072,10648,12167,13824,15625,14352,34992,21504,

%U 24389,27000,30225,32768,35937,39304,42000,82944,48396,59280,48438,64000,68921,72576,77529,85184,162000,97336

%N Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.

%C It appears that a(n) = n^3 for n in A088232. See also A066498. - _Michel Marcus_, Oct 11 2016

%H Chai Wah Wu, <a href="/A276919/b276919.txt">Table of n, a(n) for n = 1..10000</a>

%t JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]

%o (PARI) a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ _Michel Marcus_, Oct 11 2016

%o (PARI) qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}

%o a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ _David A. Corneth_, Oct 11 2016

%o (Python)

%o def A276919(n):

%o ndict = {}

%o for i in range(n):

%o i3 = pow(i,3,n)

%o for j in range(i+1):

%o j3 = pow(j,3,n)

%o m = (i3+j3) % n

%o if m in ndict:

%o if i == j:

%o ndict[m] += 1

%o else:

%o ndict[m] += 2

%o else:

%o if i == j:

%o ndict[m] = 1

%o else:

%o ndict[m] = 2

%o count = 0

%o for i in ndict:

%o j = (1-i) % n

%o if j in ndict:

%o count += ndict[i]*ndict[j]

%o return count # _Chai Wah Wu_, Jun 06 2017

%Y Cf. A000189, A047726, A060839, A063454, A087412, A087786, A254073, A276920.

%K nonn,mult

%O 1,2

%A _José María Grau Ribas_, Sep 22 2016