OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.
FORMULA
EXAMPLE
The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
MATHEMATICA
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2023
STATUS
approved