|
|
A277567
|
|
Numbers k such that k/6^m == 1 (mod 6), where 6^m is the greatest power of 6 that divides k.
|
|
5
|
|
|
1, 6, 7, 13, 19, 25, 31, 36, 37, 42, 43, 49, 55, 61, 67, 73, 78, 79, 85, 91, 97, 103, 109, 114, 115, 121, 127, 133, 139, 145, 150, 151, 157, 163, 169, 175, 181, 186, 187, 193, 199, 205, 211, 216, 217, 222, 223, 229, 235, 241, 247, 252, 253, 258, 259, 265
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Positions of 1 in A277544. Numbers having 1 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
|
|
MATHEMATICA
|
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_] := Flatten[Position[a[b], d]]
p[6, 1] (* A277567 *)
p[6, 2] (* A277568 *)
p[6, 3] (* A277569 *)
p[6, 4] (* A277570 *)
p[6, 5] (* A277571 *)
|
|
PROG
|
(PARI) is(n)=(n/6^valuation(n, 6))%6==1 \\ Charles R Greathouse IV, Nov 03 2016
|
|
CROSSREFS
|
Cf. A277544, A277568, A277569.
Sequence in context: A182623 A127020 A154662 * A070398 A022096 A041175
Adjacent sequences: A277564 A277565 A277566 * A277568 A277569 A277570
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Nov 01 2016
|
|
STATUS
|
approved
|
|
|
|