login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277569 Numbers n such that n/6^m == 3 (mod 6), where 6^m is the greatest power of 6 that divides n. 7
3, 9, 15, 18, 21, 27, 33, 39, 45, 51, 54, 57, 63, 69, 75, 81, 87, 90, 93, 99, 105, 108, 111, 117, 123, 126, 129, 135, 141, 147, 153, 159, 162, 165, 171, 177, 183, 189, 195, 198, 201, 207, 213, 219, 225, 231, 234, 237, 243, 249, 255, 261, 267, 270, 273, 279 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Positions of 3 in A277544.

Numbers having 3 as rightmost nonzero digit in base 6.  This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.  Every term is a multiple of 3; see A277573.

Numbers m having the property that tau(3m) < tau(2m) where tau(m) = A000005(m) (i.e., the number of divisors of m). - Gary Detlefs, Jan 28 2019

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016

MAPLE

with(numtheory): for n from 1 to 279 do if tau(3*n)<tau(2*n) then print(n) fi od # Gary Detlefs, Jan 28 2019

MATHEMATICA

z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]

p[b_, d_] := Flatten[Position[a[b], d]]

p[6, 1] (* A277567 *)

p[6, 2] (* A277568 *)

p[6, 3] (* A277569 *)

p[6, 4] (* A277570 *)

p[6, 5] (* A277571 *)

PROG

(PARI) is(n)=(n/6^valuation(n, 6))%6==3 \\ Charles R Greathouse IV, Nov 03 2016

CROSSREFS

Cf. A277544, A277567, A277568, A277573.

Sequence in context: A100331 A155764 A259754 * A310329 A310330 A071123

Adjacent sequences:  A277566 A277567 A277568 * A277570 A277571 A277572

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 04:05 EDT 2022. Contains 354048 sequences. (Running on oeis4.)