login
A277568
Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.
8
2, 8, 12, 14, 20, 26, 32, 38, 44, 48, 50, 56, 62, 68, 72, 74, 80, 84, 86, 92, 98, 104, 110, 116, 120, 122, 128, 134, 140, 146, 152, 156, 158, 164, 170, 176, 182, 188, 192, 194, 200, 206, 212, 218, 224, 228, 230, 236, 242, 248, 254, 260, 264, 266, 272, 278
OFFSET
1,1
COMMENTS
Positions of 2 in A277544.
Numbers having 2 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277572.
LINKS
FORMULA
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
MATHEMATICA
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_] := Flatten[Position[a[b], d]]
p[6, 1] (* A277567 *)
p[6, 2] (* A277568 *)
p[6, 3] (* A277569 *)
p[6, 4] (* A277570 *)
p[6, 5] (* A277571 *)
PROG
(PARI) is(n)=(n/6^valuation(n, 6))%6==2 \\ Charles R Greathouse IV, Nov 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 01 2016
STATUS
approved