login
A318574
Denominator of the reciprocal sum of the integer partition with Heinz number n.
3
1, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 6, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 1, 12, 8, 3, 3, 13, 4, 14, 5, 3, 9, 15, 2, 2, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 1, 21, 12, 6, 8, 20, 3, 22
OFFSET
1,3
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the denominator of Sum y_i/x_i.
MATHEMATICA
Table[Sum[pr[[2]]/PrimePi[pr[[1]]], {pr, If[n==1, {}, FactorInteger[n]]}], {n, 100}]//Denominator
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Aug 29 2018
STATUS
approved