|
|
A233409
|
|
Squares with squarefree neighbors.
|
|
1
|
|
|
4, 16, 36, 144, 196, 256, 400, 484, 900, 1156, 1296, 1600, 1764, 2704, 2916, 3136, 3364, 3600, 4356, 5184, 6084, 7056, 7396, 7744, 8100, 8464, 8836, 9216, 10404, 10816, 11236, 11664, 12100, 12544, 12996, 16384, 16900, 19044, 19600, 20164, 20736, 22500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms are multiples of 4. Whether n is congruent to 1 or 3 mod 4, n^2 is congruent to 1 mod 3 and therefore mu(n^2 - 1) = 0. - Alonso del Arte, Dec 12 2013
|
|
LINKS
|
|
|
EXAMPLE
|
36 is in this sequence because 35 and 37 are both squarefree.
64 is not in this sequence because 63 = 3^2 * 7.
|
|
MATHEMATICA
|
Select[Table[n^2, {n, 150}], SquareFreeQ[# - 1] && SquareFreeQ[# + 1] &] (* Vaclav Kotesovec, Dec 11 2013 *)
Select[Range[150]^2, Abs[MoebiusMu[# - 1] MoebiusMu[# + 1]] == 1 &] (* Alonso del Arte, Dec 11 2013 *)
|
|
PROG
|
(PARI) forstep(n=2, 1e3, [2, 2, 6, 2, 2, 2, 2], if(issquarefree(n-1) && issquarefree(n+1) && issquarefree(n^2+1), print1(n^2", "))) \\ Charles R Greathouse IV, Mar 18 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|