login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160533 Coefficients in the expansion of C^5/B^6, in Watson's notation of page 118. 1
1, 6, 27, 98, 315, 918, 2492, 6367, 15495, 36145, 81326, 177219, 375461, 775544, 1565870, 3096615, 6008917, 11458720, 21502964, 39754385, 72485518, 130464603, 231989748, 407847488, 709365160, 1221364655, 2082872680, 3519963776, 5897536697, 9800358525 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

G. N. Watson, Ramanujans Vermutung √ľber Zerf√§llungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.

FORMULA

See Maple code in A160525 for formula.

G.f.: Product_{n>=1} (1 - x^(7*n))^5/(1 - x^n)^6. - Seiichi Manyama, Nov 06 2016

a(n) ~ exp(Pi*sqrt(74*n/21)) * sqrt(37) / (1372*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017

EXAMPLE

G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + ...

G.f. = q^29 + 6*q^53 + 27*q^77 + 98*q^101 + 315*q^125 + 918*q^149 + 2492*q^173 + ...

MATHEMATICA

nn = 29; CoefficientList[Series[Product[(1 - x^(7 n))^5/(1 - x^n)^6, {n, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Nov 06 2016 *)

CROSSREFS

Cf. A160525, A160526, A160527, A160528.

Sequence in context: A160507 A182821 A277283 * A023005 A001874 A009061

Adjacent sequences:  A160530 A160531 A160532 * A160534 A160535 A160536

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 10:04 EDT 2021. Contains 345025 sequences. (Running on oeis4.)