login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160534
Coefficients in the expansion of B^7/C, in Watson's notation of page 118.
4
1, -7, 14, 7, -49, 21, 35, 42, -56, -119, 105, -70, 147, 147, -133, -168, -231, 252, -154, 315, 441, 7, -644, -574, 595, -679, 735, 574, 196, -406, -840, 840, -1470, 854, 1260, 21, -1617, -966, 1575, -1176, 1785, 1470, 35, -1974, -2058, 1533, -1988, 1932, 2387, -301, -2170, -2016, 3087, -2422
OFFSET
0,2
LINKS
Watson, G. N., Ramanujans Vermutung ueber Zerfaellungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
FORMULA
See Maple code in A160525 for formula.
Euler transform of period 7 sequence [ -7, -7, -7, -7, -7, -7, -6, ...]. - Alois P. Heinz, Jan 07 2017
EXAMPLE
1-7*x^24+14*x^48+7*x^72-49*x^96+21*x^120+35*x^144+42*x^168-...
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
`if`(irem(d, 7)=0, -6, -7), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..70); # Alois P. Heinz, Jan 07 2017
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, #*If[Mod[#, 7]==0, -6, -7]&]* a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A340312 A029844 A000730 * A022699 A362586 A102654
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 14 2009
STATUS
approved