login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n. 3
1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..24.

Eric Weisstein's World of Mathematics, Hermite Polynomial.

Wikipedia, Hermite polynomials.

EXAMPLE

For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.

MATHEMATICA

Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]

PROG

(PARI) a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016

(Python)

from sympy import hermite, Poly

def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017

CROSSREFS

Cf. A059343, A277280 (with signs).

Sequence in context: A131387 A207647 A152453 * A172452 A004527 A002871

Adjacent sequences:  A277278 A277279 A277280 * A277282 A277283 A277284

KEYWORD

nonn

AUTHOR

Vladimir Reshetnikov, Oct 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 16:40 EDT 2020. Contains 336439 sequences. (Running on oeis4.)