The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n. 3
 1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Hermite Polynomial. Wikipedia, Hermite polynomials. EXAMPLE For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160. MATHEMATICA Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}] PROG (PARI) a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016 (Python) from sympy import hermite, Poly def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017 CROSSREFS Cf. A059343, A277280 (with signs). Sequence in context: A131387 A207647 A152453 * A172452 A004527 A002871 Adjacent sequences:  A277278 A277279 A277280 * A277282 A277283 A277284 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Oct 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 16:40 EDT 2020. Contains 336439 sequences. (Running on oeis4.)