login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277280
Maximal coefficient in Hermite polynomial of order n.
4
1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hermite Polynomial.
EXAMPLE
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
MATHEMATICA
Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
PROG
(PARI) a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
(Python)
from sympy import hermite, Poly
def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017
CROSSREFS
Cf. A059343, A277281 (ignoring signs).
Sequence in context: A341109 A307635 A323453 * A095197 A333302 A321532
KEYWORD
nonn
AUTHOR
STATUS
approved