login
A277280
Maximal coefficient in Hermite polynomial of order n.
4
1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hermite Polynomial.
EXAMPLE
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
MATHEMATICA
Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
PROG
(PARI) a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
(Python)
from sympy import hermite, Poly
def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017
CROSSREFS
Cf. A059343, A277281 (ignoring signs).
Sequence in context: A341109 A307635 A323453 * A095197 A333302 A321532
KEYWORD
nonn
AUTHOR
STATUS
approved