The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277280 Maximal coefficient in Hermite polynomial of order n. 3
 1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Hermite Polynomial. Wikipedia, Hermite polynomials. EXAMPLE For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120. MATHEMATICA Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}] PROG (PARI) a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016 (Python) from sympy import hermite, Poly def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017 CROSSREFS Cf. A059343, A277281 (ignoring signs). Sequence in context: A098204 A307635 A323453 * A095197 A333302 A321532 Adjacent sequences:  A277277 A277278 A277279 * A277281 A277282 A277283 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Oct 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 12:53 EDT 2020. Contains 336323 sequences. (Running on oeis4.)