login
A307635
a(0)=1; thereafter a(n) = largest number that can be obtained by applying "Choix de Bruxelles (version 2)" (see A323460) to a(n-1).
18
1, 2, 4, 8, 16, 112, 224, 448, 4416, 44112, 88224, 816448, 8164416, 81644112, 811288224, 8112816448, 81128164416, 811281644112, 8112811288224, 81128112816448, 811281128164416, 8112811281644112, 81128112811288224, 811281128112816448, 8112811281128164416, 81128112811281644112, 811281128112811288224, 8112811281128112816448
OFFSET
0,2
LINKS
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
FORMULA
a(n+4) = decimal concatenation of 8112 and a(n) for n >= 10.
CROSSREFS
Cf. A323460. Coincides with A323453 except for a(7).
Sequence in context: A287705 A098204 A341109 * A323453 A277280 A095197
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, May 01 2019
EXTENSIONS
a(24)-a(27) corrected by N. J. A. Sloane, Aug 22 2020 at the suggestion of an unknown user of Twitter.
STATUS
approved