This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307636 Numbers k with property that no two divisors of k share a common digit. 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 27, 29, 37, 43, 47, 49, 53, 59, 67, 73, 79, 83, 86, 87, 89, 97, 223, 227, 229, 233, 239, 257, 263, 267, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Giorgos Kalogeropoulos, Hostile Divisor Numbers, Code Golf, May 2019 EXAMPLE 9566 is such a number because its divisors are  1, 2, 4783 and 9566, and no two of them share the same digit. MAPLE filter:= proc(n) local D, i, j;   D:= map(t -> convert(convert(t, base, 10), set), convert(numtheory:-divisors(n), list));   for i from 2 to nops(D) do     for j from 1 to i-1 do        if D[i] intersect D[j] <> {} then return false fi   od od;   true end proc: select(filter, [\$1..1000]); # Robert Israel, Jul 07 2019 MATHEMATICA Select[Range@1000, !Or@@IntersectingQ@@@Subsets[IntegerDigits@Divisors[#], {2}]&] PROG (PARI) isok(k) = {my(d = divisors(k), dd = apply(x->Set(digits(x)), d)); for (i=1, #dd, for (j=i+1, #dd, if (#setintersect(dd[i], dd[j]), return (0)); ); ); return (1); } \\ Michel Marcus, Jul 07 2019 CROSSREFS A038603 is a subsequence. Sequence in context: A272814 A322516 A132080 * A048386 A302503 A198044 Adjacent sequences:  A307633 A307634 A307635 * A307637 A307638 A307639 KEYWORD nonn,base AUTHOR Giorgos Kalogeropoulos, May 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 07:08 EDT 2019. Contains 327253 sequences. (Running on oeis4.)