login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307636
Numbers k with property that no two divisors of k share a common digit.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 27, 29, 37, 43, 47, 49, 53, 59, 67, 73, 79, 83, 86, 87, 89, 97, 223, 227, 229, 233, 239, 257, 263, 267, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503
OFFSET
1,2
LINKS
Giorgos Kalogeropoulos, Hostile Divisor Numbers, Code Golf, May 2019.
EXAMPLE
9566 is such a number because its divisors are 1, 2, 4783 and 9566, and no two of them share the same digit.
MAPLE
filter:= proc(n) local D, i, j;
D:= map(t -> convert(convert(t, base, 10), set), convert(numtheory:-divisors(n), list));
for i from 2 to nops(D) do
for j from 1 to i-1 do
if D[i] intersect D[j] <> {} then return false fi
od od;
true
end proc:
select(filter, [$1..1000]); # Robert Israel, Jul 07 2019
MATHEMATICA
Select[Range@1000, !Or@@IntersectingQ@@@Subsets[IntegerDigits@Divisors[#], {2}]&]
PROG
(PARI) isok(k) = {my(d = divisors(k), dd = apply(x->Set(digits(x)), d)); for (i=1, #dd, for (j=i+1, #dd, if (#setintersect(dd[i], dd[j]), return (0)); ); ); return (1); } \\ Michel Marcus, Jul 07 2019
(Python)
from itertools import count, combinations, islice
from sympy import divisors
def A307636gen(): return filter(lambda n:all(len(set(s[0])&set(s[1])) == 0 for s in combinations((str(d) for d in divisors(n, generator=True)), 2)), count(1))
A307636_list = list(islice(A307636gen(), 20)) # Chai Wah Wu, Dec 08 2021
CROSSREFS
A038603 is a subsequence.
Sequence in context: A272814 A322516 A132080 * A373722 A048386 A302503
KEYWORD
nonn,base
AUTHOR
STATUS
approved