login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272814
Palindromes such that sum of digits equals product of digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 12221, 13131, 21212, 31113, 1111441111, 1114114111, 1141111411, 1411111141, 4111111114, 11112421111, 11121412111, 11211411211, 12111411121, 21111411112, 111122221111, 111212212111, 111221122111, 112112211211, 112121121211
OFFSET
1,2
COMMENTS
Inspired by A272436.
Intersection of A002113 and A034710.
This sequence is obviously infinite.
MATHEMATICA
m[w_] := Flatten@Table[i, {i, 9}, {w[[i]]}]; palQ[n_] := n == FromDigits@ Reverse@ IntegerDigits@n; all[upd_] := Union@ Flatten@ Table[ FromDigits /@ Flatten[ Permutations /@ m /@ Select[ Flatten[Permutations /@ (IntegerPartitions[d + 9, {9}, Range[d+1]] -1), 1], Times @@ (Range[9]^#) == Total[# Range[9]] &], 1], {d, upd}]; Select[all@13, palQ] (* Giovanni Resta, May 06 2016 *)
PROG
(PARI) isok(n) = { my(d = digits(n)); (vecsum(d) == prod(k=1, #d, d[k])) && (subst(Polrev(d), x, 10) == n); } \\ Michel Marcus, May 07 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Altug Alkan, May 06 2016
EXTENSIONS
a(15)-a(29) from Giovanni Resta, May 06 2016
STATUS
approved