login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes such that sum of digits equals product of digits.
1

%I #20 Aug 14 2017 03:25:40

%S 1,2,3,4,5,6,7,8,9,22,12221,13131,21212,31113,1111441111,1114114111,

%T 1141111411,1411111141,4111111114,11112421111,11121412111,11211411211,

%U 12111411121,21111411112,111122221111,111212212111,111221122111,112112211211,112121121211

%N Palindromes such that sum of digits equals product of digits.

%C Inspired by A272436.

%C Intersection of A002113 and A034710.

%C This sequence is obviously infinite.

%H Chai Wah Wu, <a href="/A272814/b272814.txt">Table of n, a(n) for n = 1..10000</a>

%t m[w_] := Flatten@Table[i, {i, 9}, {w[[i]]}]; palQ[n_] := n == FromDigits@ Reverse@ IntegerDigits@n; all[upd_] := Union@ Flatten@ Table[ FromDigits /@ Flatten[ Permutations /@ m /@ Select[ Flatten[Permutations /@ (IntegerPartitions[d + 9, {9}, Range[d+1]] -1), 1], Times @@ (Range[9]^#) == Total[# Range[9]] &], 1], {d, upd}]; Select[all@13, palQ] (* _Giovanni Resta_, May 06 2016 *)

%o (PARI) isok(n) = { my(d = digits(n)); (vecsum(d) == prod(k=1, #d, d[k])) && (subst(Polrev(d), x, 10) == n);} \\ _Michel Marcus_, May 07 2016

%Y Cf. A002113, A034710, A272436.

%K nonn,base

%O 1,2

%A _Altug Alkan_, May 06 2016

%E a(15)-a(29) from _Giovanni Resta_, May 06 2016