|
|
A213260
|
|
p(5n+4) where p(k) = number of partitions of k = A000041(k).
|
|
7
|
|
|
5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
It is known that a(n) is divisible by 5 (see A071734).
|
|
LINKS
|
James Grime and Brady Haran, Partitions, Numberphile video (2016).
|
|
FORMULA
|
|
|
MATHEMATICA
|
Table[PartitionsP[5n+4], {n, 0, 40}] (* Harvey P. Dale, May 30 2013 *)
|
|
PROG
|
(Python)
from sympy.ntheory import npartitions
def a(n): return npartitions(5*n+4)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|