login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213260
p(5n+4) where p(k) = number of partitions of k = A000041(k).
7
5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
OFFSET
0,1
COMMENTS
It is known that a(n) is divisible by 5 (see A071734).
LINKS
James Grime and Brady Haran, Partitions, Numberphile video (2016).
Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6 1969 56--59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012
FORMULA
a(n) = A000041(A016897(n)). - Omar E. Pol, Jan 18 2013
MATHEMATICA
Table[PartitionsP[5n+4], {n, 0, 40}] (* Harvey P. Dale, May 30 2013 *)
PROG
(PARI) a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
(Python)
from sympy.ntheory import npartitions
def a(n): return npartitions(5*n+4)
print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 07 2012
STATUS
approved