Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #67 Sep 27 2019 02:46:42
%S 1,6,27,98,315,913,2462,6237,15035,34705,77231,166364,348326,710869,
%T 1417900,2769730,5308732,9999185,18533944,33845975,60960273,108389248,
%U 190410133,330733733,568388100,967054374,1629808139,2722189979
%N a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.
%C One of the congruences related to the partition numbers stated by Ramanujan.
%C Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - _Michael Somos_, Jan 06 2015
%D Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
%D G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From _N. J. A. Sloane_, Jun 07 2012
%H Seiichi Manyama, <a href="/A071734/b071734.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Bouroubi and N. Benyahia Tani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Bouroubi/bouroubi25.html">A new identity for complete Bell polynomials based on a formula of Ramanujan</a>, J. Integer Seq. 12 (2009), 09.3.5.
%H J. L. Drost, <a href="http://www.jstor.org/stable/2974479">A Shorter Proof of the Ramanujan Congruence Modulo 5</a>, Amer. Math. Monthly 104(10) (1997), 963-964.
%H M. D. Hirschhorn, <a href="http://web.maths.unsw.edu.au/~mikeh/webpapers/paper60.pdf">Another Shorter Proof of Ramanujan's Mod 5 Partition Congruence, and More</a>, Amer. Math. Monthly 106(6) (1999), 580-583.
%H M. Savic, <a href="http://www.cs.bsu.edu/homepages/fischer/Journal/01-01/savic.pdf">The Partition Function and Ramanujan's 5k+4 Congruence</a>, Mathematics Exchange 1(1) (2003), 2-4.
%H G. N. Watson, <a href="http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002174499">Ramanujans Vermutung über Zerfällungszahlen</a>, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128.
%H Lasse Winquist, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80105-5">An elementary proof of p(11m+6) == 0 (mod 11)</a>, J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
%F a(n) = (1/5)*A000041(5n+4).
%F G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - _Paul D. Hanna_, May 22 2011
%F a(n) = A000041(A016897(n))/5 = A213260(n)/5. - _Omar E. Pol_, Jan 18 2013
%F Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - _Michael Somos_, Jan 07 2015
%F Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - _Michael Somos_, Jan 07 2015
%F a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - _Vaclav Kotesovec_, Nov 28 2016
%e G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...
%e G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
%p with(combinat):
%p a:= n-> numbpart(5*n+4)/5:
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jan 07 2015
%t a[ n_] := PartitionsP[ 5 n + 4] / 5; (* _Michael Somos_, Jan 07 2015 *)
%t a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* _Michael Somos_, Jan 07 2015 *)
%t nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 28 2016 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
%o (PARI) {a(n) = numbpart(5*n + 4) / 5};
%o (PARI) a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ _Paul D. Hanna_
%Y Cf. A000041, A016897, A071746, A076394, A213256, A213260.
%K easy,nonn
%O 0,2
%A _Benoit Cloitre_, Jun 24 2002