login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076392
Increasing partial quotients of the continued fraction for agm(1,i)/(1+i).
2
0, 1, 2, 42, 61, 88, 238, 254, 288, 347, 575, 4034, 9853, 21798, 49736, 108435, 109003, 181562, 1035352, 1955976, 6950275, 30712753, 41463747, 45117343, 112401242, 116579541
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean
Wolfram Research, Arithmetic-Geometric Mean
EXAMPLE
A076391(1) = 0
A076391(2) = 1
A076391(4) = 2
A076391(5) = 42
A076391(96) = 61
A076391(121) = 88
A076391(310) = 238
A076391(461) = 254
A076391(540) = 288
A076391(627) = 347
A076391(699) = 575
A076391(1136) = 4034
A076391(2986) = 9853
A076391(4172) = 21798
A076391(16727) = 49736
A076391(39201) = 108435
A076391(110180) = 109003
A076391(130606) = 181562
A076391(506314) = 1035352
A076391(512390) = 1955976
A076391(1248836) = 6950275
A076391(1990391) = 30712753
A076391(2528055) = 41463747
A076391(4853400) = 45117343
A076391(7427594) = 112401242
A076391(96166990) = 116579541
MATHEMATICA
a = ContinuedFraction[ Chop[ N[ ArithmeticGeometricMean[1, I]/(1 + I), 10^4]]]; b = 0; Do[ If[ a[[n]] > b, Print[a[[n]]]; b = a[[n]]], {n, 1, 10^4}]
CROSSREFS
Sequence in context: A076391 A348773 A130201 * A291173 A048373 A066563
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Oct 09 2002
EXTENSIONS
a(21)-a(26) from Vaclav Kotesovec, Oct 03 2019
STATUS
approved