login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182668
The n-th Fourier coefficient divided by 11 of L_1(tau) defined by A. O. L. Atkin in 1967.
2
1, 27, 338, 2835, 18566, 101955, 490253, 2121679, 8424520, 31120519, 108082568, 355805844, 1117485594, 3366122862, 9767102571, 27398599802, 74534162438, 197147428426, 508187725366, 1279132093597, 3149343999710, 7596355910693, 17974782074306, 41775768918777
OFFSET
1,2
COMMENTS
Atkin (1967) on page 22, equation (30), defines phi(tau) = eta(121*tau) / eta(tau), a modular function which satisfies phi(-1/(121*t)) = 11^(-1)/phi(t), where q = exp(2*Pi*i*t). On page 23, equation (33), he defines L_1(tau) = U phi(tau), where U is a Hecke operator so that the n-th Fourier coefficient of L_1 is the 11*n-th Fourier coefficient of phi. On page 26, he finds that L_1(tau) = 11*g_2(tau) + 2*11^2*g_3(tau) + 11^3*g_4(tau) + 11^4*g_5(tau), where g_2, g_3, g_4, g_5 are functions he previously defined. The n-th Fourier coefficient of L_1 is 11*a(n).
First differs from A076394 at a(12). - Omar E. Pol, Dec 24 2012
The sequence of coefficients of the q-expansion of phi(tau) coincides with the partition function A000041 for the first 120 terms. - N. J. A. Sloane, Dec 24 2012
LINKS
A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J., 8 (1967), 14-32.
EXAMPLE
x + 27*x^2 + 338*x^3 + 2835*x^4 + 18566*x^5 + 101955*x^6 + 490253*x^7 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[ eta[q^121]/ eta[q]/11, {q, 0, 300}], q][[1 ;; -1 ;; 11]] (* G. C. Greubel, Aug 10 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n = 11*n - 5; A = x * O(x^n); polcoeff( eta(x^121 + A) / eta(x + A), n) / 11)}
CROSSREFS
Sequence in context: A048709 A268973 A160223 * A076394 A133211 A178983
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 24 2012
STATUS
approved