login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The n-th Fourier coefficient divided by 11 of L_1(tau) defined by A. O. L. Atkin in 1967.
2

%I #27 Jul 29 2020 20:07:42

%S 1,27,338,2835,18566,101955,490253,2121679,8424520,31120519,108082568,

%T 355805844,1117485594,3366122862,9767102571,27398599802,74534162438,

%U 197147428426,508187725366,1279132093597,3149343999710,7596355910693,17974782074306,41775768918777

%N The n-th Fourier coefficient divided by 11 of L_1(tau) defined by A. O. L. Atkin in 1967.

%C Atkin (1967) on page 22, equation (30), defines phi(tau) = eta(121*tau) / eta(tau), a modular function which satisfies phi(-1/(121*t)) = 11^(-1)/phi(t), where q = exp(2*Pi*i*t). On page 23, equation (33), he defines L_1(tau) = U phi(tau), where U is a Hecke operator so that the n-th Fourier coefficient of L_1 is the 11*n-th Fourier coefficient of phi. On page 26, he finds that L_1(tau) = 11*g_2(tau) + 2*11^2*g_3(tau) + 11^3*g_4(tau) + 11^4*g_5(tau), where g_2, g_3, g_4, g_5 are functions he previously defined. The n-th Fourier coefficient of L_1 is 11*a(n).

%C First differs from A076394 at a(12). - _Omar E. Pol_, Dec 24 2012

%C The sequence of coefficients of the q-expansion of phi(tau) coincides with the partition function A000041 for the first 120 terms. - _N. J. A. Sloane_, Dec 24 2012

%H G. C. Greubel, <a href="/A182668/b182668.txt">Table of n, a(n) for n = 1..1000</a>

%H A. O. L. Atkin, <a href="https://doi.org/10.1017/S0017089500000045">Proof of a conjecture of Ramanujan</a>, Glasgow Math. J., 8 (1967), 14-32.

%e x + 27*x^2 + 338*x^3 + 2835*x^4 + 18566*x^5 + 101955*x^6 + 490253*x^7 + ...

%t eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[ eta[q^121]/ eta[q]/11, {q, 0, 300}], q][[1 ;; -1 ;; 11]] (* _G. C. Greubel_, Aug 10 2018 *)

%o (PARI) {a(n) = local(A); if( n<1, 0, n = 11*n - 5; A = x * O(x^n); polcoeff( eta(x^121 + A) / eta(x + A), n) / 11)}

%Y Cf. A000041, A076394.

%K nonn

%O 1,2

%A _Michael Somos_, Dec 24 2012