login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342372
Triangle T(n,k) of number of ways of arranging q nonattacking semi-queens on an n X n toroidal board, where 0 <= k <= n.
2
1, 1, 1, 1, 4, 0, 1, 9, 9, 3, 1, 16, 48, 32, 0, 1, 25, 150, 250, 75, 15, 1, 36, 360, 1200, 1224, 288, 0, 1, 49, 735, 4165, 8869, 6321, 931, 133, 1, 64, 1344, 11648, 43136, 64512, 33024, 4096, 0, 1, 81, 2268, 27972, 160866, 423306, 469800
OFFSET
1,5
COMMENTS
T(0,0):=1 for combinatorial reasons.
A semi-queen can only move horizontal, vertical and parallel to the main diagonal of the board. Moves parallel to the secondary diagonal are not allowed.
Instead of a board on a torus, you can imagine that the semi-queens can leave a flat board on one side and re-enter the board on the other side.
LINKS
FORMULA
T(n,0) = 1.
T(n,1) = n^2.
T(n,2) = n^2*(n-1)*(n-2)/2.
T(n,3) = n^2*(n-1)*(n-2)*(n^2-6n+10)/6.
T(2n+1,2n+1) = A006717(n).
T(2n,2n) = 0.
EXAMPLE
1;
1, 1;
1, 4, 0;
1, 9, 9, 3;
1, 16, 48, 32, 0;
1, 25, 150, 250, 75, 15;
KEYWORD
tabl,nonn
AUTHOR
Walter Trump, Mar 09 2021
STATUS
approved