The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202654 Number of ways to place 3 nonattacking semi-queens on an n X n board. 5
 0, 0, 3, 52, 370, 1620, 5285, 14168, 33012, 69240, 133815, 242220, 415558, 681772, 1076985, 1646960, 2448680, 3552048, 5041707, 7018980, 9603930, 12937540, 17184013, 22533192, 29203100, 37442600, 47534175, 59796828, 74589102, 92312220, 113413345, 138388960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019. V. Kotesovec, Non-attacking chess pieces FORMULA a(n) = 1/6*(n-2)*(n-1)*n*(n^3-5*n^2+8*n-3). G.f.: -x^3*(17*x^3 + 69*x^2 + 31*x + 3)/(x-1)^7. MATHEMATICA Rest@ CoefficientList[Series[-x^3*(17 x^3 + 69 x^2 + 31 x + 3)/(x - 1)^7, {x, 0, 32}], x] (* Michael De Vlieger, Aug 19 2019 *) CROSSREFS Cf. A099152, A047659, A103220, A202655, A202656, A202657. Sequence in context: A273923 A037106 A246748 * A030180 A005547 A301948 Adjacent sequences:  A202651 A202652 A202653 * A202655 A202656 A202657 KEYWORD nonn AUTHOR Vaclav Kotesovec, Dec 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 12:01 EDT 2022. Contains 355985 sequences. (Running on oeis4.)