login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 3 nonattacking semi-queens on an n X n board.
5

%I #16 Aug 23 2024 12:20:33

%S 0,0,3,52,370,1620,5285,14168,33012,69240,133815,242220,415558,681772,

%T 1076985,1646960,2448680,3552048,5041707,7018980,9603930,12937540,

%U 17184013,22533192,29203100,37442600,47534175,59796828,74589102,92312220,113413345,138388960

%N Number of ways to place 3 nonattacking semi-queens on an n X n board.

%C Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

%H Michael De Vlieger, <a href="/A202654/b202654.txt">Table of n, a(n) for n = 1..10000</a>

%H Christopher R. H. Hanusa, Thomas Zaslavsky, <a href="https://arxiv.org/abs/1906.08981">A q-queens problem. VII. Combinatorial types of nonattacking chess riders</a>, arXiv:1906.08981 [math.CO], 2019.

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).

%F a(n) = 1/6*(n-2)*(n-1)*n*(n^3-5*n^2+8*n-3).

%F G.f.: -x^3*(17*x^3 + 69*x^2 + 31*x + 3)/(x-1)^7.

%t Rest@ CoefficientList[Series[-x^3*(17 x^3 + 69 x^2 + 31 x + 3)/(x - 1)^7, {x, 0, 32}], x] (* _Michael De Vlieger_, Aug 19 2019 *)

%Y Cf. A099152, A047659, A103220, A202655, A202656, A202657.

%K nonn

%O 1,3

%A _Vaclav Kotesovec_, Dec 22 2011