login
A200292
Decimal expansion of greatest x satisfying 4*x^2 - cos(x) = 4*sin(x).
3
9, 8, 5, 7, 7, 6, 3, 8, 1, 7, 0, 3, 9, 0, 0, 4, 5, 5, 0, 3, 0, 7, 9, 4, 0, 5, 3, 8, 7, 9, 8, 1, 9, 7, 0, 2, 6, 4, 6, 4, 5, 4, 7, 6, 8, 0, 5, 5, 7, 6, 8, 2, 0, 7, 6, 9, 5, 1, 3, 0, 6, 1, 3, 2, 4, 7, 8, 8, 7, 1, 1, 4, 4, 3, 5, 5, 7, 6, 3, 0, 7, 3, 6, 6, 1, 0, 7, 1, 6, 8, 3, 1, 1, 7, 4, 8, 2, 1, 5
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.2044255015377807131364929398797955...
greatest x: 0.98577638170390045503079405387981...
MATHEMATICA
a = 4; b = -1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.21, -.20}, WorkingPrecision -> 110]
RealDigits[r] (* A200291 *)
r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]
RealDigits[r] (* A200292 *)
PROG
(PARI) a=4; b=-1; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A275703 A094141 A377602 * A155791 A327341 A059068
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved