login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084659
Number of labeled claw-free cubic graphs on 2n nodes (not necessarily connected).
1
1, 0, 1, 60, 2555, 466200, 62791575, 14536021500, 8381453705625, 3284480337138000, 1942832950684250625, 2143745512307546647500, 1743194710893176557891875, 2022583790860881671548125000
OFFSET
0,4
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..26 Nov 26 2018
B. D. McKay, Edgar M. Palmer, Ronald C. Read and Robert W. Robinson. The asymptotic number of claw-free cubic graphs, Discrete Math., 272 (2003), 107-118.
Edgar M. Palmer, Ronald C. Read and Robert W. Robinson. Counting claw-free cubic graphs, SIAM J. Discrete Math. 16 (2002), 65-73.
FORMULA
Recurrence is given in Maple code below. For asymptotics see the 2003 paper.
MAPLE
cfc[0] := 1; cfc[1] := 0; cfc[n+1] := (6*n-5)*binomial(2*n+1, 3)*cfc[n-1] + 60*(2*n^2-7)*binomial(2*n+1, 5)*cfc[n-2] + 420*(12*n-31)*binomial(2*n+1, 7)*cfc[n-3] - 60480*(4*n-19)*binomial(2*n+1, 9)*cfc[n-4] - 3326400*(6*n^2-54*n+127)*binomial(2*n+1, 11)*cfc[n-5] - 172972800*(9*n^2-108*n+347)*binomial(2*n+1, 13)*cfc[n-6] - 54486432000*(n-1)*binomial(2*n+1, 15)*cfc[n-7] + 59281238016000*(n-7)*binomial(2*n+1, 17)*cfc[n-8] + 422378820864000*(18*n-97)*binomial(2*n+1, 19)*cfc[n-9] + 6563766876226560000*binomial(2*n+1, 21)*cfc[n-10] + 673229602575129600000*binomial(2*n+1, 23)*cfc[n-11];
CROSSREFS
Cf. A057848.
Sequence in context: A058929 A057848 A082670 * A230568 A180373 A264947
KEYWORD
nonn
AUTHOR
Gordon F. Royle, Jun 02 2003
STATUS
approved