login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rowland's prime-generating sequence: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(n, a(n-1)).
61

%I #67 Mar 15 2023 07:53:54

%S 7,8,9,10,15,18,19,20,21,22,33,36,37,38,39,40,41,42,43,44,45,46,69,72,

%T 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,

%U 141,144,145,150,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168

%N Rowland's prime-generating sequence: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(n, a(n-1)).

%C The title refers to the sequence of first differences, A132199.

%C Setting a(1) = 4 gives A084662.

%C Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.

%C See A137613 for additional comments, links and references. - _Jonathan Sondow_, Aug 14 2008

%C Not all starting values generate differences of all 1's or primes. The following a(1) generate composite differences: 532, 533, 534, 535, 698, 699, 706, 707, 708, 709, 712, 713, 714, 715, ... - _Dmitry Kamenetsky_, Jul 18 2015

%C The same results are obtained if 2's are removed from n when gcd is performed, so the following is also true: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(A000265(n), a(n-1)). - _David Morales Marciel_, Sep 14 2016

%D Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

%H Indranil Ghosh, <a href="/A106108/b106108.txt">Table of n, a(n) for n = 1..25000</a> (terms 1..1000 from T. D. Noe)

%H Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, <a href="https://doi.org/10.37236/2006">On Rowland's sequence</a>, Electronic J. Combin., Vol. 18(2), 2011, #P10.

%H Brian Hayes, <a href="http://bit-player.org/2015/pumping-the-primes">Pumping the Primes</a>, bit-player, 19 August 2015.

%H Eric S. Rowland, <a href="http://arXiv.org/abs/0710.3217">A simple prime-generating recurrence</a>, arXiv:0710.3217 [math.NT], 2007-2008.

%H Eric S. Rowland, <a href="http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/">Prime-Generating Recurrence</a>, Wolfram Demonstrations Project. - _Robert G. Wilson v_, Sep 10 2008

%H Eric S. Rowland, <a href="https://www.youtube.com/watch?v=OpaKpzMFOpg">Prime-Generating Recurrences and a Tale of Logarithmic Scale</a>, YouTube video, 2023.

%p S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n,f(n-1))); fi; end; [seq(f(n),n=1..200)];

%t a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* _Robert G. Wilson v_, Sep 10 2008 *)

%o (PARI) a=vector(100);a[1]=7;for(n=2,#a,a[n]=a[n-1]+gcd(n,a[n-1]));a \\ _Charles R Greathouse IV_, Jul 15 2011

%o (Haskell)

%o a106108 n = a106108_list !! (n-1)

%o a106108_list =

%o 7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])

%o -- _Reinhard Zumkeller_, Nov 15 2013

%o (Magma) [n le 1 select 7 else Self(n-1) + Gcd(n, Self(n-1)): n in [1..70]]; // _Vincenzo Librandi_, Jul 19 2015

%o (Python)

%o from itertools import count, islice

%o from math import gcd

%o def A106108_gen(): # generator of terms

%o yield (a:=7)

%o for n in count(2):

%o yield (a:=a+gcd(a,n))

%o A106108_list = list(islice(A106108_gen(),20)) # _Chai Wah Wu_, Mar 14 2023

%Y Cf. A084662, A084663, A132199, A134734, A134736, A134743, A134744, A134162, A137613, A221869.

%Y Cf. A230504.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jan 28 2008