login
A133058
a(0) = a(1) = 1; for n > 1, a(n) = a(n-1) + n + 1 if a(n-1) and n are coprime, otherwise a(n) = a(n-1)/gcd(a(n-1),n).
25
1, 1, 4, 8, 2, 8, 4, 12, 3, 1, 12, 24, 2, 16, 8, 24, 3, 21, 7, 27, 48, 16, 8, 32, 4, 30, 15, 5, 34, 64, 32, 64, 2, 36, 18, 54, 3, 41, 80, 120, 3, 45, 15, 59, 104, 150, 75, 123, 41, 91, 142, 194, 97, 151, 206, 262, 131, 189, 248, 308, 77, 139, 202, 266, 133, 199, 266, 334, 167
OFFSET
0,3
COMMENTS
Remarkably, at n = 638 the sequence settles down and becomes quasi-periodic. - N. J. A. Sloane, Feb 22 2015. (Whenever I look at this sequence I am reminded of the great "Fly straight, dammit" scene in the movie "Avatar". - N. J. A. Sloane, Aug 06 2019)
For every choice of initial term a(0) there exist integers r and t >= 0 such that a(2*r+4*t+0) = 1, a(2*r+4*t+1) = 2*r+4*t+3, a(2*r+4*t+2) = 2*(2*r+4*t+3), a(2*r+4*t+3) = 2. - Ctibor O. Zizka, Dec 26 2007
See also the variants A255051 (which starts immediately with the same (1, x, 2x, 2) loop that the present sequence enters at n >= 641) and A255140 (which enters a different loop at n = 82). - M. F. Hasler, Feb 15 2015
With the recurrence used here (but with different starting values), if at some point we find a(2k) = 1, then from that point on the sequence looks like (1, x, 2x, 2), (1, x+4, 2(x+4), 2), (1, x+8, 2(x+8), 2), (1, x+12, 2(x+12), 2), ... where x = 2k+3. This is just a restatement of Zizka's comment above (although I have not seen a proof that this must always happen). - N. J. A. Sloane, Feb 22 2015
It is conjectured that quasi-periodic sequences exist only for R = 0, 1, 2 or 3 in a(n) = a(n-1) + n + R and that for R >= 4 the recurrence is not quasi-periodic. For R = 0, 1, 2 all starting values give a quasi-periodic sequence. The respective loop is (1, x) for R = 0, (1, x, 2x, 2) for R = 1 (this sequence), (1, x, 2x, x) or (2x, x) for R = 2. For R = 3 only some starting values converge to a 6-loop (4x+2, 2x+1, 3x+6, x+2, 2x+9, 3x+17). - Ctibor O. Zizka, Oct 27 2015
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000, May 26 2016 [First 1000 terms from Harvey P. Dale]
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
N. J. A. Sloane and Brady Haran, Amazing Graphs, Numberphile video (2019).
MAPLE
A[0]:= 1: A[1]:= 1:
for n from 2 to 1000 do
g:= igcd(A[n-1], n);
A[n]:= A[n-1]/g + `if`(g=1, n+1, 0);
od:
seq(A[i], i=0..1000); # Robert Israel, Nov 06 2015
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[CoprimeQ[a, n+1], a+n+2, a/GCD[a, n+1]]}; Join[{1}, Transpose[ NestList[nxt, {1, 1}, 70]][[2]]] (* Harvey P. Dale, Feb 14 2015 *)
PROG
(PARI) (A133058_upto(N)=vector(N, n, if(gcd(N, n-1)>1 || n<3, N\=gcd(N, n-1), N+=n)))(100) \\ M. F. Hasler, Feb 15 2015, simplified Jan 11 2020
(Magma) a:=[1]; for n in [2..70] do if Gcd(a[n-1], n) eq 1 then Append(~a, a[n-1] + n + 1); else Append(~a, a[n-1] div Gcd(a[n-1], n)); end if; end for; [1] cat a; // Marius A. Burtea, Jan 12 2020
(Python)
from itertools import count, islice
from math import gcd
def A133058_gen(): # generator of terms
a = 1
yield from (1, 1)
for n in count(2):
yield (a:=a+n+1 if (b:=gcd(a, n)) == 1 else a//b)
A133058_list = list(islice(A133058_gen(), 30)) # Chai Wah Wu, Mar 18 2023
CROSSREFS
KEYWORD
nonn,look,nice,easy
AUTHOR
Ctibor O. Zizka, Dec 16 2007
EXTENSIONS
More terms from Ctibor O. Zizka, Dec 26 2007
Offset and definition corrected by N. J. A. Sloane, Feb 13 2015
STATUS
approved