login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: 1 / zeta(s-2).
9

%I #18 Apr 04 2023 12:35:03

%S 1,-4,-9,0,-25,36,-49,0,0,100,-121,0,-169,196,225,0,-289,0,-361,0,441,

%T 484,-529,0,0,676,0,0,-841,-900,-961,0,1089,1156,1225,0,-1369,1444,

%U 1521,0,-1681,-1764,-1849,0,0,2116,-2209,0,0,0,2601,0,-2809,0,3025,0,3249,3364,-3481,0,-3721

%N Dirichlet g.f.: 1 / zeta(s-2).

%C Dirichlet inverse of A000290.

%C Moebius transform of A046970.

%C Inverse Moebius transform of A053822.

%H Amiram Eldar, <a href="/A334657/b334657.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f. A(x) satisfies: A(x) = x - 2^2 * A(x^2) - 3^2 * A(x^3) - 4^2 * A(x^4) - ...

%F a(1) = 1; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2.

%F a(n) = mu(n) * n^2.

%F Multiplicative with a(p^e) = -p^2 if e = 1 and 0 otherwise. - _Amiram Eldar_, Oct 25 2020

%t Table[MoebiusMu[n] n^2, {n, 61}]

%Y Cf. A008683, A055615, A334659, A334660.

%Y Cf. A000290, A046970, A053822.

%K sign,mult,easy

%O 1,2

%A _Ilya Gutkovskiy_, May 07 2020