login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023902
Theta series of A_11 lattice.
14
1, 132, 2970, 19800, 66462, 194832, 420684, 881760, 1511730, 2770284, 4134240, 6754968, 9491130, 14310120, 18773964, 27609648, 34253142, 47864520, 58862870, 78974808, 93470652, 125490024, 143483340, 186539760, 214957644, 271553700, 304365600
OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
LINKS
MATHEMATICA
terms = 21; f[q_] = LatticeData["A11", "ThetaSeriesFunction"][-I Log[q] / Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
PROG
(PARI) theta3(k, n, prec, f, m)=f=polcyclo(n); 1+sum(m=1, sqrtint(prec), Mod(x^(m*k%n)+x^(m*(n-k)%n), f)*q^sqr(m))+O(q^(prec+1))
aaa(n, prec, k, m)=sum(k=0, n-1, theta3(k, n, prec)^n)/n/(1+2*sum(m=1, sqrtint(floor(prec/n)), q^(n*sqr(m)))+O(q^(prec+1)))
doit(m, prec)=subst(lift(aaa(m+1, prec)), x, 0) \\ gives theta series of A_m to order "prec"; code from Robert.Harley(AT)inria.fr
CROSSREFS
Sequence in context: A220996 A254646 A242147 * A240270 A168180 A236260
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Jun 12 2019
STATUS
approved