login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023900 Dirichlet inverse of Euler totient function (A000010). 96

%I

%S 1,-1,-2,-1,-4,2,-6,-1,-2,4,-10,2,-12,6,8,-1,-16,2,-18,4,12,10,-22,2,

%T -4,12,-2,6,-28,-8,-30,-1,20,16,24,2,-36,18,24,4,-40,-12,-42,10,8,22,

%U -46,2,-6,4,32,12,-52,2,40,6,36,28,-58,-8,-60,30,12,-1,48,-20,-66,16,44,-24,-70,2,-72,36,8,18,60,-24,-78,4,-2

%N Dirichlet inverse of Euler totient function (A000010).

%C Also called reciprocity balance of n.

%C Apart from different signs, same as sum( d divides n,core(d)*mu(n/d)), where core(d) (A007913) is the squarefree part of d. - _Benoit Cloitre_, Apr 06 2002

%C Row sums of triangle A143256. - _Gary W. Adamson_, Aug 02 2008

%C Main diagonal of A191898. - _Mats Granvik_, Jun 19 2011

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.

%D D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 125.

%H Antti Karttunen, <a href="/A023900/b023900.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from T. D. Noe)

%H G. P. Brown, <a href="http://www.jstor.org/stable/3621931">Some comments on inverse arithmetic functions</a>, Math. Gaz. 89 (516) (2005) 403-408.

%H K. Dohmen, M. Trinks, <a href="http://arxiv.org/abs/1404.5480">An Abstraction of Whitney's Broken Circuit Theorem</a>, arXiv preprint arXiv:1404.5480 [math.CO], 2014.

%H R. Kemp, <a href="http://dx.doi.org/10.1016/0012-365X(82)90123-6">On the number of words in the language {w in Sigma* | w = w^R }^2</a>, Discrete Math., 40 (1982), 225-234.

%F a(n) = Sum_{ d divides n } d*mu(d) = Product_{p|n} (1-p).

%F a(n) = 1 / (Sum_{ d divides n } mu(d)*d/phi(d)).

%F Dirichlet g.f.: zeta(s)/zeta(s-1). - _Michael Somos_, Jun 04 2000

%F a(n+1) = det(n+1)/det(n) where det(n) is the determinant of the n X n matrix M_(i, j) = i/gcd(i, j) = lcm(i, j)/j. - _Benoit Cloitre_, Aug 19 2003

%F a(n) = phi(n)*moebius(A007947(n))*A007947(n)/n. Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = log(F(x)) where F(x) is the g.f. of A117209 and satisfies: 1/(1-x) = Product_{n >= 1} F(x^n). - _Paul D. Hanna_, Mar 03 2006

%F G.f.: A(x) = Sum_{k >= 1} mu(k) k x^k/(1 - x^k) where mu(k) is the Moebius (Mobius) function, A008683. - _Stuart Clary_, Apr 15 2006

%F G.f.: A(x) is x times the logarithmic derivative of A117209(x). - _Stuart Clary_, Apr 15 2006

%F Row sums of triangle A134842. - _Gary W. Adamson_, Nov 12 2007

%F G.f.: x/(1-x) = Sum_{n >= 1} a(n)*x^n/(1-x^n)^2. - _Paul D. Hanna_, Aug 16 2008

%F a(n) = phi(rad(n)) *(-1)^omega(n) = A000010(A007947(n)) *(-1)^A001221(n). - _Enrique Pérez Herrero_, Aug 24 2010

%F a(n) = Product_{i = 2..n} (1-i)^( (pi(i)-pi(i-1)) * floor( (cos(n*Pi/i))^2 ) ), where pi = A000720, Pi = A000796. - _Wesley Ivan Hurt_, May 24 2013

%F a(n) = -limit of zeta(s)*(Sum_{d divides n} moebius(d)/exp(d)^(s-1)) as s->1 for n>1. - _Mats Granvik_, Jul 31 2013

%F a(n) = Sum_{d divides n} mu(d)* rad(d), where rad is A007947. - _Enrique Pérez Herrero_, May 29 2014.

%F Conjecture for n>1: Let n = 2^(A007814(n))*m = 2^(ruler(n))*odd_part(n), where m = A000265(n), then a(n) = (-1)^(m=n)*(0+Sum_{i=1..m and gcd(i,m)=1} (4*min(i,m-i)-m)) = (-1)^(m<n)*(1+Sum_{i=1..m and gcd(i,m)>1} (4*min(i,m-i)-m)). - _I. V. Serov_, May 02 2017

%F a(n) = (-1)^A001221(n) * A173557(n). - _R. J. Mathar_, Nov 02 2017

%F a(1) = 1; for n > 1, a(n) = (1-A020639(n)) * a(A028234(n)), because multiplicative with a(p^e) = (1-p). - _Antti Karttunen_, Nov 28 2017

%e x - x^2 - 2*x^3 - x^4 - 4*x^5 + 2*x^6 - 6*x^7 - x^8 - 2*x^9 + 4*x^10 - ...

%p A023900 := n -> mul(1-i,i=numtheory[factorset](n)); # _Peter Luschny_, Oct 26 2010

%t a[ n_] := If[ n < 1, 0, Sum[ d MoebiusMu @ d, { d, Divisors[n]}]] (* _Michael Somos_, Jul 18 2011 *)

%t Array[ Function[ n, 1/Plus @@ Map[ #*MoebiusMu[ # ]/EulerPhi[ # ]&, Divisors[ n ] ] ], 90 ]

%t nmax = 81; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* _Stuart Clary_, Apr 15 2006 *)

%t t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n < k, If[n > 1 && k > 1, Sum[-t[k - i, n], {i, 1, n - 1}], 0], If[n > 1 && k > 1, Sum[-t[n - i, k], {i, 1, k - 1}], 0]]; Table[t[n, n], {n, 36}] (* _Mats Granvik_, _Robert G. Wilson v_, Jun 25 2011 *)

%t Table[DivisorSum[m, # MoebiusMu[#] &], {m, 90}] (* _Jan Mangaldan_, Mar 15 2013 *)

%o (PARI) {a(n) = direuler( p=2, n, (1 - p*X) / (1 - X))[n]}

%o (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d * moebius(d)))} /* _Michael Somos_, Jul 18 2011 */

%o (PARI) a(n)=sumdivmult(n,d, d*moebius(d)) \\ _Charles R Greathouse IV_, Sep 09 2014

%o (Haskell)

%o a023900 1 = 1

%o a023900 n = product $ map (1 -) $ a027748_row n

%o -- _Reinhard Zumkeller_, Jun 01 2015

%o (Python)

%o from sympy import divisors, mobius

%o def a(n): return sum([d*mobius(d) for d in divisors(n)]) # _Indranil Ghosh_, Apr 29 2017

%o (Scheme, with memoization-macro definec) (definec (A023900 n) (if (= 1 n) 1 (* (- 1 (A020639 n)) (A023900 (A028234 n))))) ;; _Antti Karttunen_, Nov 28 2017

%Y Cf. A000010, A023898, A117209, A134842.

%Y Moebius transform is A055615.

%Y Cf. A027748, A173557 (gives the absolute values), A295876.

%K sign,easy,nice,mult

%O 1,3

%A _Olivier Gérard_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 11:10 EDT 2019. Contains 322309 sequences. (Running on oeis4.)